organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(9-Anthryl)-2-methylbutyn-2-ol

Irena Bylińska, Artur Sikorski* and Wiesław Wiczk

Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland

Correspondence e-mail: art@chem.univ.gda.pl

Received 10 January 2008: accepted 15 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.170; data-to-parameter ratio = 13.7.

There are two molecules in the asymmetric unit of the title compound, C₁₉H₁₆O. Neighbouring molecules are linked through O-H···O hydrogen bonds into an $R_4^4(8)$ ring motif. There are also $C - H \cdot \cdot \pi$ hydrogen and $\pi - \pi$ interactions. The molecules are either parallel to each other or are inclined at an angle of 12.5 (1)°.

Related literature

For applications of this class of compounds, see: Bunz (2000); De Silva et al. (1999), Krasovitski & Bolotin (1988); O'Regan & Grätzel (1991); Schumm et al. (1994). For the use of ethynylanthracene derivatives in organic synthesis, see Wen et al. (2004); Xiao et al. (2007). For comparison bond dimensions of the anthracene skeleton, see: Cuffet et al. (2005); Elangovan et al. (2005). For the structure of 9,10-bis(3-hydroxy-3-methyl-1-butyne)anthracene, see: Dang et al. (2002).

Experimental

Crystal data

$C_{19}H_{16}O$	
$M_r = 260.32$	
Triclinic, P1	
a = 9.995 (2) Å	
b = 12.738 (3) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

Data collection

Kuma KM-4 diffractometer Absorption correction: none 5258 measured reflections 5011 independent reflections 2370 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.170$ S = 0.985011 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline O18-H18\cdots O38^{i} \\ O38-H38\cdots O18^{ii} \end{array}$	0.82	2.01	2.726 (3)	145
	0.82	2.06	2.766 (3)	145

T = 298 (2) K

 $R_{\rm int} = 0.019$ 3 standard reflections

366 parameters

 $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

 $0.60 \times 0.20 \times 0.10 \text{ mm}$

every 200 reflections

intensity decay: 1.1%

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y - 1, z.

Table 2

C-H··· π interactions (Å,°).

Cg1 is the centroid of the C5/C10-C14 ring and Cg2 is the centroid of the C1-C4/C12/C11 ring.

Χ	Н	J	$H \cdot \cdot \cdot J$	$X \cdots J$	$X - I \cdot \cdot \cdot J$
C19	H19C	$Cg1^{iii}$	2.87	3.810 (4)	167
C20	H20B	$Cg2^{iii}$	2.76	3.703 (4)	168
C24	H24	$Cg2^{iv}$	2.64	3.472 (3)	149
C25	H25	$Cg1^{iv}$	2.92	3.794 (3)	157

Symmetry codes: (iii) 1 - y, -y, 1 - z; (iv) 1 - x, 1 - y, -z.

Table 3

 $\pi - \pi$ interactions (Å,°).

Cg3 is the centroid of the C25/30-C34 ring and Cg4 is the centroid of the C26-C29/C33/C34 ring. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

CgI	CgJ	$Cg \cdots Cg$	Dihedral angle	Interplanar distance	Offset
3	4^{v}	3.794 (2)	1.2	3.370 (2)	1.336 (2)
4	3 ^v	3.794 (2)	1.2	3.404 (2)	1.464 (2)

Symmetry code: (v) 1 - x, -y, -z.

Data collection: *KM-4 Software* (Oxford Diffraction, 1995-2003); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This work was financially supported by the Ministry of Science and Higher Education (Poland) under grant BW 8000-5-0408-7.

⊦³C			H ₃	
	Ċ			
	Ĭ			
\sim		\checkmark		

c = 12.905 (3) Å $\alpha = 75.70 \ (3)^{\circ}$

 $\beta = 72.18 \ (3)^{\circ}$

 $\gamma = 68.84 (3)^{\circ}$

V = 1441.4 (7) Å³

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2418).

References

- Bunz, U. H. F. (2000). Chem. Rev. 100, 1605-1644.
- Cuffet, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). *Organometallics*, 24, 2051–2060.
- Dang, H., Levitus, M. & Garcia-Garibay, M. A. (2002). J. Am. Chem. Soc. 124, 136–143.
- De Silva, A. P., Dixon, I. M., Gunaratne, H. Q. N., Gunnlaugsson, T., Maxwell, P. R. S. M. & Rice, T. E. (1999). *J. Am. Chem. Soc.* **121**, 1393–1394.
- Elangovan, A., Kao, K.-M., Yang, S.-W., Chen, Y.-L., Ho, T.-I. & Su, Y. O. (2005). J. Org. Chem. 35, 4460–4469.

- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Krasovitski, B. M. & Bolotin, B. M. (1988). Organic Luminescent Materials. Weinheim: VCH.
- O'Regan, B. & Grätzel, M. (1991). Nature (London), 353, 737-738.
- Oxford Diffraction (1995–2003). *KM4 Software*. Version 1.171. Oxford Diffraction Poland, Wrocław, Poland.
- Schumm, J. S., Pearson, D. L. & Tour, J. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 1360–1363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wen, J. Y., Chang, H. K., Mi-Yun, J., Seung, K. L., Ming, J. P., Seung, J. J. & Bong, R. C. (2004). *Chem. Mater.* 16, 2783–2789.
- Xiao, Q., Ranasinghe, R. T., Tang, A. M. P. & Brown, T. (2007). *Tetrahedron*, **63**, 3483–3490.

Acta Cryst. (2008). E64, o484-o485 [doi:10.1107/S1600536808001542]

4-(9-Anthryl)-2-methylbutyn-2-ol

I. Bylinska, A. Sikorski and W. Wiczk

Comment

Recently there is a need for molecules containing triple bond because of their electroconductive, magnetic and nonlinear optical properties. This class of the compounds are used as molecular wires (Bunz, 2000), molecular scale logic gates (De Silva *et al.*, 1999), optical and microelectronic devices (Schumm *et al.*, 1994), sensors (Krasovitski & Bolotin, 1988) and molecular photovoltaic cells (O'Regan & Grätzel, 1991)). Ethynylanthracene derivatives are substrates in many synthesis (Wen *et al.*, 2004; Xiao *et al.*, 2007). 2-Methyl-3-butyn-2-ol is an alternative protecting group for (trimethylsilyl)acetylene, more useful in reaction carried at higher temperature (because of its higher boiling point) as well as giving acetylene derivatives containing various substituents in homo- and heterocoupling. Because of that we use this protecting group to synthesize acetylene derivatives to study influence of the aromatic subtituent size on the photophysical properties of the compounds in search for organic material with extended π system, characterized by high fluorescence quantum yield. As an intermediate in the synthesis of anthracene derivative, 9-(3-hydroxy-3-methyl-1-butyne)anthracene was isolated and its crystal structure was determined.

Parameters characterizing the geometry of the anthracene skeleton are typical of anthracene-based derivatives (Cuffet *et al.*, 2005; Elangovan *et al.*, 2005).

In the crystal, the asymmetric unit consists of two molecules of the title compound (Fig. 1) which crystallizing in the triclinic crystal system, in P -1 space group, as well as 9,10-bis(3-hydroxy-3-methyl-1-butyne)anthracene (Dang *et al.*, 2002).

In the crystal structure, neighbouring molecules are linked through O—H···O hydrogen bond forming $R_4^{4}(8)$ ring motif (Table 1 and Fig. 2). Molecules which forming this motif are linked by C—H··· π hydrogen bonds (Table 2 and Fig. 2) or π - π interactions (Table 3 and Fig. 2). In the packing, the anthracene moieties are either parallel or inclined at an angle of 12.5 (1)°.

Experimental

9-(3-hydroxy-3-methyl-1-butyne)anthracene has been synthesized by Sonogashira-Hagihara coupling from 9-bromoanthracene (10 mmol) and 2-methyl-3-butyn-2-ol (20 mmol) in DMF in the presence of Pd(PPh₃)₄ (0.0162 mmol) and Cu₂I₂ (0.13 mmol) as catalysts, triphenylphosphine (0.16 mmol), triethylamine (12 ml). The mixture was stirred at 333 K under argon atmosphere for 24 h. The reaction was monitored by TLC (petroleum ether-ethyl/acetate 10:1 ν/ν , R_f =0.64; Merck Silica-gel plates (Kieselgel 60 F₂₅₄)). When the reaction was completed the catalysts were filtered off, filtrate was poured into water and extracted with ethyl acetate. The brownish-red organic layer was dried over anhydrous MgSO₄. The solvent was removed *in vacuo* giving a brownish-red oil. The crude was isolated by column chromatography on silica gel (Merck, Silica gel 60, 0.040–0.063 mm) using petroleum ether-ethyl/acetate (10:1 ν/ν) as an eluent and then crystallized from ethyl acetate to give yellow crystals (79% yield) [m.p. = 400–402 K].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ (C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group) and O—H distances of 0.82 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.

Fig. 2. The arrangement of the ions in the unit cell, viewed along the *c* axis, showing $R_4^{4}(8)$ ring motifs. The O—H···O interactions are represented by dashed lines, and C—H··· π and π - π interactions by dotted lines. H atoms not involved in interactions have been ommitted. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, -1 + y, z; (iii) 1 - x, -y, 1 - z; (iv) 1 - x, -y, -z; (v) 1 - x, -y, -z.]

4-(9-Anthryl)-2-methylbutyn-2-ol

Crystal data	
C ₁₉ H ₁₆ O	Z = 4
$M_r = 260.32$	$F_{000} = 552$
Triclinic, PT	$D_{\rm x} = 1.200 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.995 (2) Å	Cell parameters from 50 reflections
b = 12.738 (3) Å	$\theta = 2.2 - 25.0^{\circ}$
c = 12.905 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 75.70 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 72.18 \ (3)^{\circ}$	Block, white
$\gamma = 68.84 (3)^{\circ}$	$0.60 \times 0.20 \times 0.10 \text{ mm}$
V = 1441.4 (7) Å ³	

Data collection

Kuma KM4 diffractometer	$R_{\rm int} = 0.019$
Radiation source: fine-focus sealed tube	$\theta_{max} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 298(2) K	$h = -11 \rightarrow 11$

$\theta/2\theta$ scans	$k = -14 \rightarrow 14$
Absorption correction: none	$l = 0 \rightarrow 15$
5258 measured reflections	3 standard reflections
5011 independent reflections	every 200 reflections
2370 reflections with $I > 2\sigma(I)$	intensity decay: 1.1%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^2(F_o^2) + (0.0961P)^2 + 0.1391P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.170$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
5011 reflections	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
366 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.036 (4)

Secondary atom site location: difference Fourier map

Special details

Experimental. no

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6439 (3)	0.6352 (3)	0.2744 (3)	0.0703 (8)
H1	0.6036	0.6730	0.3353	0.084*
C2	0.7751 (4)	0.6414 (3)	0.2076 (3)	0.0873 (10)
H2	0.8236	0.6839	0.2227	0.105*
C3	0.8389 (4)	0.5848 (3)	0.1160 (3)	0.0878 (11)
H3	0.9293	0.5897	0.0705	0.105*
C4	0.7694 (3)	0.5232 (3)	0.0939 (3)	0.0767 (9)
H4	0.8133	0.4850	0.0333	0.092*
C5	0.5568 (3)	0.4561 (2)	0.1365 (2)	0.0635 (8)
Н5	0.6000	0.4182	0.0757	0.076*
C6	0.3395 (4)	0.3939 (3)	0.1734 (3)	0.0737 (9)
H6	0.3822	0.3552	0.1130	0.088*
C7	0.2042 (4)	0.3938 (3)	0.2325 (3)	0.0816 (10)
H7	0.1533	0.3565	0.2125	0.098*
C8	0.1392 (4)	0.4496 (3)	0.3240 (3)	0.0763 (9)

H8	0.0442	0.4507	0.3643	0.092*
C9	0.2129 (3)	0.5021 (2)	0.3547 (2)	0.0626 (8)
Н9	0.1693	0.5364	0.4178	0.075*
C10	0.4290 (3)	0.5670(2)	0.3197 (2)	0.0519 (7)
C11	0.5670 (3)	0.5725 (2)	0.2536 (2)	0.0549 (7)
C12	0.6313 (3)	0.5154 (2)	0.1606 (2)	0.0571 (7)
C13	0.3538 (3)	0.5062 (2)	0.2937 (2)	0.0497 (6)
C14	0.4198 (3)	0.4511 (2)	0.1999 (2)	0.0565 (7)
C15	0.3608 (3)	0.6290 (2)	0.4102 (2)	0.0528 (7)
C16	0.3033 (3)	0.6851 (2)	0.4820 (2)	0.0508 (7)
C17	0.2380 (3)	0.7569 (2)	0.5676 (2)	0.0473 (6)
O18	0.1648 (2)	0.86882 (14)	0.52019 (15)	0.0609 (5)
H18	0.1476	0.9139	0.5618	0.091*
C19	0.1281 (3)	0.7122 (3)	0.6591 (2)	0.0733 (9)
H19A	0.0470	0.7163	0.6316	0.110*
H19B	0.0921	0.7572	0.7173	0.110*
H19C	0.1748	0.6344	0.6869	0.110*
C20	0.3575 (3)	0.7670 (3)	0.6081 (3)	0.0732 (9)
H20A	0.4249	0.7962	0.5474	0.110*
H20B	0.4098	0.6932	0.6413	0.110*
H20C	0.3145	0.8178	0.6618	0.110*
C21	0.8461 (3)	0 1228 (3)	0 0840 (3)	0 0745 (9)
H21	0.8929	0.0796	0 1399	0.089*
C22	0.9110 (4)	0 1911 (3)	0.0040(3)	0.0928 (11)
H22	1 0007	0.1960	0.0063	0.111*
C23	0 8464 (4)	0.2547(3)	-0.0822(3)	0.0838 (10)
H23	0.8933	0.3008	-0.1378	0.101*
C24	0.7175 (4)	0.2495(2)	-0.0849(2)	0.0675 (8)
H24	0.6750	0.2926	-0.1429	0.081*
C25	0.5086 (3)	0.1752 (2)	-0.0037(2)	0.0576(7)
H25	0.4649	0.2187	-0.0610	0.069*
C26	0.2985 (3)	0.1032 (3)	0.0763 (3)	0.009
H26	0.2533	0.1480	0.0703 (5)	0.0709(5)
C27	0.2306 (4)	0.0359 (3)	0.0201 0.1544(3)	0.0865 (10)
H27	0.1302	0.0347	0.1520	0.0003 (10)
C28	0.1372 0.2058 (4)	-0.0326(3)	0.1320	0.104
U28	0.2938 (4)	-0.0790	0.2399 (3)	0.0011 (10)
C20	0.2477 0.4271(3)	-0.0314(3)	0.2940 0.2436(2)	0.097
U29	0.4271 (5)	-0.0785	0.2430 (2)	0.0040(8)
C20	0.4701	-0.0783	0.3000	0.078
C30	0.0380(3)	0.0447(2) 0.1152(2)	0.1004(2)	0.0490(0)
C31	0.7097(3)	0.1132(2) 0.1807(2)	0.0831(2)	0.0527(7)
C32	0.0432(3)	0.1807(2)	-0.0028(2)	0.0555(7)
C33	0.5030(3)	0.0397(2)	0.1039(2)	0.0509(7)
C34	0.4302(3)	0.1077(2)	0.0770(2)	0.0547(7)
C35	0.7031(3)	-0.0211(2)	0.2346 (2)	0.03/3(7)
C30	0.7030(3)	-0.0706(2)	0.32/4(2)	0.05/3(7)
028	0.8328(3)	-0.1305(2)	0.4190(2)	0.0559(7)
038	0.9388 (2)	-0.07847 (15)	0.41664 (16)	0.0645 (6)
H38	0.9901	-0.11/9	0.4596	0.097/*

C39	0.9208 (4)	-0.2512 (2)	0.4034 (3)	0.0831 (11)
H39A	0.9937	-0.2516	0.3347	0.125*
H39B	0.8560	-0.2911	0.4026	0.125*
H39C	0.9690	-0.2881	0.4626	0.125*
C40	0.7207 (4)	-0.1233 (3)	0.5257 (3)	0.0870 (11)
H40A	0.6651	-0.0449	0.5313	0.130*
H40B	0.7689	-0.1558	0.5853	0.130*
H40C	0.6552	-0.1644	0.5293	0.130*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.059 (2)	0.082 (2)	0.072 (2)	-0.0160 (16)	-0.0187 (16)	-0.0192 (17)
C2	0.063 (2)	0.114 (3)	0.092 (3)	-0.034 (2)	-0.019 (2)	-0.021 (2)
C3	0.052 (2)	0.127 (3)	0.080 (2)	-0.026 (2)	-0.0044 (18)	-0.023 (2)
C4	0.0560 (19)	0.102 (3)	0.0614 (19)	-0.0108 (17)	-0.0111 (15)	-0.0175 (17)
C5	0.066 (2)	0.0655 (18)	0.0487 (16)	-0.0035 (15)	-0.0127 (14)	-0.0175 (14)
C6	0.091 (3)	0.069 (2)	0.0673 (19)	-0.0273 (18)	-0.0207 (19)	-0.0149 (16)
C7	0.098 (3)	0.081 (2)	0.082 (2)	-0.050 (2)	-0.015 (2)	-0.0135 (19)
C8	0.082 (2)	0.074 (2)	0.075 (2)	-0.0402 (18)	-0.0072 (18)	-0.0058 (18)
C9	0.070 (2)	0.0516 (17)	0.0559 (17)	-0.0165 (14)	-0.0066 (15)	-0.0040 (13)
C10	0.0499 (16)	0.0473 (14)	0.0472 (15)	-0.0010 (12)	-0.0148 (12)	-0.0046 (12)
C11	0.0484 (17)	0.0554 (16)	0.0547 (16)	-0.0031 (13)	-0.0208 (13)	-0.0065 (13)
C12	0.0517 (17)	0.0650 (17)	0.0479 (15)	-0.0064 (13)	-0.0155 (13)	-0.0103 (13)
C13	0.0552 (16)	0.0411 (13)	0.0448 (14)	-0.0081 (12)	-0.0141 (12)	0.0000 (12)
C14	0.0618 (18)	0.0518 (16)	0.0489 (16)	-0.0089 (14)	-0.0169 (14)	-0.0038 (13)
C15	0.0551 (16)	0.0451 (15)	0.0520 (16)	-0.0062 (12)	-0.0163 (13)	-0.0066 (14)
C16	0.0510 (16)	0.0478 (15)	0.0505 (15)	-0.0094 (12)	-0.0146 (13)	-0.0081 (14)
C17	0.0502 (15)	0.0398 (14)	0.0510 (15)	-0.0076 (11)	-0.0191 (12)	-0.0064 (12)
O18	0.0694 (13)	0.0396 (10)	0.0797 (13)	-0.0064 (8)	-0.0369 (10)	-0.0116 (9)
C19	0.078 (2)	0.079 (2)	0.0551 (17)	-0.0200 (17)	-0.0087 (16)	-0.0109 (16)
C20	0.071 (2)	0.0691 (19)	0.091 (2)	-0.0075 (15)	-0.0479 (18)	-0.0183 (17)
C21	0.065 (2)	0.085 (2)	0.077 (2)	-0.0254 (17)	-0.0344 (17)	0.0080 (18)
C22	0.071 (2)	0.111 (3)	0.101 (3)	-0.044 (2)	-0.033 (2)	0.015 (2)
C23	0.080(2)	0.090 (2)	0.078 (2)	-0.038 (2)	-0.0195 (19)	0.0091 (19)
C24	0.076 (2)	0.0655 (19)	0.0596 (18)	-0.0212 (16)	-0.0258 (16)	0.0034 (15)
C25	0.0621 (19)	0.0519 (16)	0.0553 (16)	-0.0027 (14)	-0.0327 (14)	-0.0013 (13)
C26	0.0574 (19)	0.076 (2)	0.084 (2)	-0.0115 (16)	-0.0340 (17)	-0.0128 (17)
C27	0.0499 (19)	0.112 (3)	0.100 (3)	-0.0241 (19)	-0.0234 (18)	-0.015 (2)
C28	0.066 (2)	0.105 (3)	0.077 (2)	-0.041 (2)	-0.0083 (18)	-0.0102 (19)
C29	0.070 (2)	0.0683 (19)	0.0545 (17)	-0.0186 (15)	-0.0169 (15)	-0.0090 (14)
C30	0.0517 (16)	0.0496 (15)	0.0488 (15)	-0.0073 (12)	-0.0228 (12)	-0.0087 (12)
C31	0.0480 (16)	0.0565 (16)	0.0526 (15)	-0.0089 (13)	-0.0198 (13)	-0.0078 (13)
C32	0.0556 (17)	0.0497 (15)	0.0510 (15)	-0.0077 (13)	-0.0223 (13)	-0.0028 (13)
C33	0.0509 (16)	0.0525 (15)	0.0464 (15)	-0.0076 (12)	-0.0162 (13)	-0.0096 (12)
C34	0.0497 (16)	0.0564 (16)	0.0592 (16)	-0.0061 (13)	-0.0226 (13)	-0.0148 (14)
C35	0.0625 (18)	0.0565 (16)	0.0545 (16)	-0.0120 (13)	-0.0278 (14)	-0.0033 (13)
C36	0.0665 (18)	0.0537 (16)	0.0572 (16)	-0.0168 (13)	-0.0281 (14)	-0.0043 (13)

C37 O38 C39 C40	0.0611 (18) 0.0616 (12) 0.121 (3) 0.089 (2)	0.0561 (17) 0.0555 (11) 0.0475 (17) 0.103 (3)	0.0563 (16) 0.0874 (14) 0.088 (2) 0.061 (2)	-0.0114 (13) -0.0091 (9) -0.0088 (17) -0.026 (2)	-0.0347 (14) -0.0470 (11) -0.059 (2) -0.0264 (18)	-0.0032 (13) -0.0072 (10) -0.0052 (16) 0.0053 (18)
Geometric paran	neters (Å, °)					
C1 C2		1 249 (4)	C21	~ ^	1 241	(4)
CI = C2		1.348 (4)	C21—	C22	1.341	(4)
		1.407 (4)	C21—	U21	1.397	(4)
C1 - H1		0.9300	C21—	C22	1 299	(4)
C2—C3		0.9300	C22—	u23	0.030	(4)
$C_2 = H_2$		1.343(5)	C22—	∩22 ∩24	1 325	(4)
C3—H3		0.9300	C23—	U24 H23	0.930	(4)
C_{3}		1,409 (4)	C23—	~32	1.404	(4)
С4—С12		0.9300	C24—	H24	0.930	0
C_{1}		1.373(4)	C24	~3 7	1 375	(4)
C_{5} $-C_{14}$		1.373 (4)	C25—	C34	1.375	(4)
C5-H5		0.9300	C25—	U25	0.930	(4)
C5—II3 C6—C7		1 334 (5)	C25—	~27	1 336	(5)
$C_{0} = C_{14}$		1.334(3) 1 417 (4)	C26-	C27	1.330	(4)
С6—Н6		0.9300	C26—	H26	0.930	(+) 0
C0—110 C7—C8		1 391 (5)	C20—	28	1 399	(5)
C7—H7		0.9300	C27	H27	0.930	0
C^{8}		1 346 (4)	C28-1	C29	1 333	(4)
C8—H8		0.9300	C28	629 H28	0.930	0
C9-C13		1 400 (4)	C20	C33	1 419	(4)
С9—Н9		0.9300	C29	H29	0.930	0
C10—C11		1 398 (4)	C30—	C33	1 390	(4)
C10-C13		1.390 (1)	C30—	C31	1.390	(4)
C10-C15		1 426 (4)	C30—	35	1.697	(3)
C11-C12		1.416 (4)	C31—	C32	1.127	(3)
C13-C14		1 411 (4)	C33—	C34	1 420	(3)
C15—C16		1.185 (4)	C35—	C36	1.180	(3)
C16—C17		1.453 (4)	C36—4	C37	1.466	(3)
C17—O18		1.425 (3)	C37—	038	1.426	(3)
C17—C20		1.498 (4)	C37—	C40	1.479	(4)
C17—C19		1.500 (4)	C37—	C39	1.500	(4)
O18—H18		0.8200	O38—	H38	0.820	0
C19—H19A		0.9600	C39—]	H39A	0.960	0
C19—H19B		0.9600	C39—]	H39B	0.960	0
C19—H19C		0.9600	C39—]	H39C	0.960	0
C20—H20A		0.9600	C40—1	H40A	0.960	0
C20—H20B		0.9600	C40—1	H40B	0.960	0
C20—H20C		0.9600	C40—1	H40C	0.960	0
C2—C1—C11		121.2 (3)	C22—	C21—C31	121.3	(3)
С2—С1—Н1		119.4	C22—	C21—H21	119.4	. /
C11—C1—H1		119.4	C31—	С21—Н21	119.4	
C1—C2—C3		120.7 (3)	C21—	C22—C23	121.0	(3)

C1—C2—H2	119.7	C21—C22—H22	119.5
C3—C2—H2	119.7	С23—С22—Н22	119.5
C4—C3—C2	119.9 (3)	C24—C23—C22	119.7 (3)
С4—С3—Н3	120.0	С24—С23—Н23	120.1
С2—С3—Н3	120.0	С22—С23—Н23	120.1
C3—C4—C12	121.4 (3)	C23—C24—C32	122.0 (3)
C3—C4—H4	119.3	C23—C24—H24	119.0
С12—С4—Н4	119.3	C32—C24—H24	119.0
C12—C5—C14	121.9 (3)	C32—C25—C34	122.5 (2)
С12—С5—Н5	119.1	С32—С25—Н25	118.8
C14—C5—H5	119.1	С34—С25—Н25	118.8
C7—C6—C14	121.9 (3)	C27—C26—C34	121.5 (3)
С7—С6—Н6	119.1	C27—C26—H26	119.2
С14—С6—Н6	119.1	C34—C26—H26	119.2
C6—C7—C8	119.9 (3)	C26—C27—C28	120.6 (3)
С6—С7—Н7	120.0	С26—С27—Н27	119.7
С8—С7—Н7	120.0	С28—С27—Н27	119.7
C9—C8—C7	120.5 (3)	C29—C28—C27	119.9 (3)
С9—С8—Н8	119.7	C29—C28—H28	120.0
С7—С8—Н8	119.7	С27—С28—Н28	120.0
C8—C9—C13	121.4 (3)	C28—C29—C33	121.9 (3)
С8—С9—Н9	119.3	С28—С29—Н29	119.1
С13—С9—Н9	119.3	С33—С29—Н29	119.1
C11—C10—C13	120.4 (2)	C33—C30—C31	121.1 (2)
C11—C10—C15	119.5 (3)	C33—C30—C35	119.7 (3)
C13—C10—C15	120.0 (2)	C31—C30—C35	119.2 (2)
C10-C11-C1	122.4 (3)	C30—C31—C21	123.2 (2)
C10-C11-C12	119.4 (3)	C30—C31—C32	119.1 (2)
C1—C11—C12	118.2 (3)	C21—C31—C32	117.7 (3)
C5—C12—C4	121.9 (3)	C25—C32—C24	122.7 (2)
C5—C12—C11	119.5 (3)	C25—C32—C31	119.0 (3)
C4—C12—C11	118.7 (3)	C24—C32—C31	118.3 (3)
C9—C13—C10	122.5 (3)	C30—C33—C29	123.4 (2)
C9—C13—C14	118.4 (3)	C30—C33—C34	119.1 (2)
C10-C13-C14	119.0 (3)	C29—C33—C34	117.5 (3)
C5-C14-C13	119.8 (3)	C25—C34—C26	122.3 (3)
C5—C14—C6	122.4 (3)	C25—C34—C33	119.2 (2)
C13—C14—C6	117.8 (3)	C26—C34—C33	118.6 (3)
C16—C15—C10	176.9 (3)	C36—C35—C30	176.2 (3)
C15—C16—C17	177.3 (3)	C35—C36—C37	178.5 (3)
O18—C17—C16	108.37 (19)	O38—C37—C36	107.7 (2)
O18—C17—C20	106.5 (2)	O38—C37—C40	110.3 (2)
C16—C17—C20	109.6 (2)	C36—C37—C40	110.7 (2)
O18—C17—C19	109.2 (2)	O38—C37—C39	105.0 (2)
C16—C17—C19	110.9 (2)	C36—C37—C39	110.5 (2)
C20—C17—C19	112.1 (2)	C40—C37—C39	112.4 (3)
C17—O18—H18	109.5	С37—О38—Н38	109.5
С17—С19—Н19А	109.5	С37—С39—Н39А	109.5
С17—С19—Н19В	109.5	С37—С39—Н39В	109.5

H19A—C19—H19B	109.5		H39A—C39—H39B		109.5
С17—С19—Н19С	109.5		С37—С39—Н39С		109.5
H19A—C19—H19C	109.5		Н39А—С39—Н39С		109.5
H19B—C19—H19C	109.5		Н39В—С39—Н39С		109.5
С17—С20—Н20А	109.5		С37—С40—Н40А		109.5
С17—С20—Н20В	109.5		С37—С40—Н40В		109.5
H20A—C20—H20B	109.5		H40A—C40—H40B		109.5
С17—С20—Н20С	109.5		С37—С40—Н40С		109.5
H20A—C20—H20C	109.5		H40A—C40—H40C		109.5
H20B—C20—H20C	109.5		H40B—C40—H40C		109.5
$C_{11} - C_{1} - C_{2} - C_{3}$	-0.5(5)		C31_C21_C22_C2	2	-1.6(6)
C1 - C2 - C3 - C4	0.0(6)		$C_{21} = C_{22} = C_{23} = C_{24}$	1	1.0 (0)
$C_{1}^{2} = C_{2}^{3} = C_{4}^{4} = C_{12}^{12}$	0.0(0)		$C_{21} C_{22} C_{23} C_{24} C_{25}$)	-0.2(5)
$C_2 - C_3 - C_7 - C_1^2$	-1.0(5)		$C_{22} - C_{23} - C_{24} - C_{32}$	2	-0.1(5)
$C_{1} = C_{0} = C_{1} = C_{0}$	-1.2(5)		$C_{24} = C_{20} = C_{27} = C_{20} = C_{20}$)	-0.2(6)
$C_{0} = C_{1} = C_{0} = C_{1}^{2}$	-1.2(3)		$C_{20} - C_{27} - C_{20} - C_{23}$	2	-0.2(0)
$C_{12} = C_{0} = C_{12} = C_{13}$	2.3(3)		$C_{27} = C_{20} = C_{29} = C_{33}$,	1.2(3) -170 8 (2)
	1/7.9(2)		$C_{33} = C_{30} = C_{31} = C_{21}$		-1/9.8(3)
$C_{13} = C_{10} = C_{11} = C_{12}$	1.0(4)		$C_{33} = C_{30} = C_{31} = C_{21}$		1.7 (4)
	-0.6(4)		$C_{33} - C_{30} - C_{31} - C_{32}$	2	-1.5 (4)
	-1/6.9(2)		$C_{35} - C_{30} - C_{31} - C_{32}$	2	-1/9.9(2)
$C_2 = C_1 $	-1/8.2(3)		$C_{22} - C_{21} - C_{31} - C_{30}$)	1/9.6 (3)
$C_2 = C_1 = C_{11} = C_{12}$	0.3 (4)		$C_{22} - C_{21} - C_{31} - C_{32}$	2	1.3 (5)
C14 - C5 - C12 - C4	-1/8.1(3)		$C_{34} - C_{25} - C_{32} - C_{24}$	ł	-1/9.9(3)
	0.6 (4)		$C_{34} - C_{25} - C_{32} - C_{31}$	-	-0.6 (4)
C3-C4-C12-C5	177.6 (3)		C23—C24—C32—C23	>	179.3 (3)
C3—C4—C12—C11	-1.0(4)		C23—C24—C32—C3	-	-0.1 (5)
C10-C11-C12-C5	0.3 (4)		C30—C31—C32—C25) -	1.8 (4)
CICIICI2C5	-178.2 (3)		C21—C31—C32—C25)	-179.8 (3)
C10-C11-C12-C4	179.0 (2)		C30—C31—C32—C24	1	-178.9 (2)
C1—C11—C12—C4	0.5 (4)		C21—C31—C32—C24	1	-0.4 (4)
C8—C9—C13—C10	175.6 (3)		C31—C30—C33—C29)	179.2 (3)
C8—C9—C13—C14	-1.7 (4)		C35—C30—C33—C29)	-2.4 (4)
C11—C10—C13—C9	-177.3 (2)		C31—C30—C33—C34	1	0.0 (4)
C15—C10—C13—C9	-1.0 (4)		C35—C30—C33—C34	1	178.4 (2)
C11—C10—C13—C14	0.0 (3)		C28—C29—C33—C30)	178.8 (3)
C15—C10—C13—C14	176.3 (2)		C28—C29—C33—C34	1	-2.0 (4)
C12—C5—C14—C13	-1.2 (4)		C32—C25—C34—C26	6	179.4 (3)
C12—C5—C14—C6	177.5 (3)		C32—C25—C34—C33	3	-0.9 (4)
C9—C13—C14—C5	178.3 (2)		C27—C26—C34—C25	5	179.0 (3)
C10-C13-C14-C5	0.9 (3)		C27—C26—C34—C33	3	-0.7 (4)
C9—C13—C14—C6	-0.4 (3)		C30—C33—C34—C25	5	1.2 (4)
C10-C13-C14-C6	-177.8 (2)		C29—C33—C34—C25	5	-178.0 (3)
C7—C6—C14—C5	-177.0 (3)		C30—C33—C34—C26	5	-179.1 (3)
C7—C6—C14—C13	1.7 (4)		C29—C33—C34—C20	6	1.7 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O18—H18···O38 ⁱ		0.82	2.01	2.726 (3)	145

O38—H38…O18 ⁱⁱ Symmetry codes: (i) -	-x+1, -y+1, -z+1; (ii) x	0.82 x+1, y-1, z.	2.06	2.766 (3)	145
Table 2 $C - H \cdots \pi$ interaction	ıs (Å, °).				
Х	Н	J	H…J	Х…Ј	X-I…J
C19	H19C	Cgl ⁱⁱⁱ	2.87	3.810 (4)	167
C20	H20B	Cg2 ⁱⁱⁱ	2.76	3.703 (4)	168
C24	H24	Cg2 ^{iv}	2.64	3.472 (3)	149
C25	H25	Cg1 ^{iv}	2.92	3.794 (3)	157

Symmetry codes: (iii) 1 - y, -y, 1 - z; (iv) 1 - x, 1 - y, -z. Cg1 is the centroid of the C5/C10–C14 ring and Cg2 is the centroid of the C1–C4/C12/C11 ring.

Table 3

 π - π interactions (Å, °).

CgI	CgJ	CgCg	Dihedral angle	Interplanar distance	Offset
3	4^{v}	3.794 (2)	1.2	3.370 (2)	1.336 (2)
4	3 ^v	3.794 (2)	1.2	3.404 (2)	1.464 (2)

Symmetry code: (v) 1 - x, -y, -z. Cg3 is the centroid of the C25/30–C34 ring and Cg4 is the centroid of the C26-C29/C33/C34 ring. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Fig. 1

